
Breaking the PayPal HIP:
A Comparison of Classifiers

Kurt Alfred Kluever
Document and Pattern Recognition Lab

Department of Computer Science
Rochester Institute of Technology

Rochester, NY 14623 USA
kurt@kloover.com

May 20, 2008

Abstract

Human Interactive Proofs (HIPs) are a method used to differentiate between humans
and machines on the internet. Providers of online services such as PayPal.com use HIPs
to prevent automated signups and abuse of their services. In this experiment, a three step
algorithm has been developed to break the PayPal.com HIP. The image is preprocessed
to remove noise using thresholding and a simple cleaning technique, and then segmented
using vertical projections and candidate split positions. Four classification methods
have been implemented: pixel counting, vertical projections, horizontal projections and
template correlations. The system was trained on a sample of twenty PayPal.com HIPs
to create thirty-six training templates (one for each character: 0-9 and A-Z). A sample
of 100 PayPal.com HIPs were used for testing. The following HIP success rates have
been achieved using the different classifiers: 8% pixel counting, vertical projections 97%,
horizontal projections 100%, template correlations 100%. Three of the classifiers out
perform the 88% HIP success rate of [6].

1 Introduction

Human Interactive Proofs (HIPs) are a
method used to automatically differentiate
between humans and machines on the inter-
net. HIPs should be easy for a machine to
automatically generate, easy for a human to
solve, and difficult, or impossible, for a ma-
chine to solve. They are typically imple-
mented as an image of distorted text which

the user must correctly transcribe. However,
nearly all of the text recognition based HIPs
are insecure against attacks based on neural
networks [3], shape matching [11], and sim-
ple pattern recognition [17]. In this experi-
ment, the PayPal.com HIP has been success-
fully broken using the conventional OCR pro-
cess: pre-processing, segment, classify. Four
classifiers have been implemented and the re-

1

sults are compared using the following met-
rics: HIP accuracy, character accuracy, con-
fidence, and running time. The classifiers are
based on the following methods: pixel count-
ing, vertical projections, horizontal projec-
tions, and template correlations. Section 2
provides a background on OCR and HIPs.
The experiment’s methodology is explained
in Section 3. Section 4 details the training
stage. Section 5 explains and compares the
results of the system. Section 6 summarizes
the approaches and the results of the work
presented.

2 Background 1

2.1 OCR

Optical Character Recognition (OCR) is the
process of translating images of handwritten,
typewritten, or printed text into a format
understood by machines for the purpose of
editing, indexing, searching, or compression
[14]. The OCR process can be broken down
into three tasks: pre-processing, segmenta-
tion, and classification.

2.1.1 Pre-processing

Pre-processing is necessary if the input image
is noisy due to old paper, poor printers, bad
scanners, etc. Generally, the pre-processing
task consists of noise removal, skew correc-
tion, and thresholding. Noise removal can
be achieved through filtering the image to re-
move extraneous or stray marks. Skew cor-
rection can be performed by estimating the
angle of the text. Thresholding is the pro-
cess of setting all intensity values greater than

1Some of the contents of the background section
is adapted from the author’s previous research and
writings performed during thesis prep.

some threshold value to “on” and is often
used as a method of binarizing an image.
Thresholding is often used to remove noise
when the salient information has either very
low or very high intensity values. These tech-
niques attempt to provide clean (or as clean
as possible) input to the segmenter.

2.1.2 Segmentation

Segmentation is the process of breaking the
input image into segments which contain
a single entity. Character-based segmenta-
tion is the decomposition of an image into
subimages which only contain a single char-
acter. Segmentation is dependent on lo-
cal decisions with regards to shape similar-
ity, and sometimes global decisions with re-
gards to surrounding context. It is a criti-
cal step in most OCR systems, and typically
the cause of a high proportion of OCR errors.
In 1996, Richard Casey and Eric Lecolinet
surveyed the available methods and defined
three categories for offline character segmen-
tation methods based on how segmentation
and classification interact in the OCR pro-
cess [2]:

• Dissection Approach: a single partition-
ing of the image into subimages based
on “character-like” properties, followed
by classification of the subimages

• Classification-based Approach: segmen-
tation where the image is iteratively
searched for components that most
closely match the classes in the alphabet

• Holistic Approach: recognize words as
single units (no character segmentation)

The task of segmenting characters varies in
difficulty based on the input type. Fixed
pitch machine printed text can typically be

2

segmented fairly easily using simple projec-
tion analysis (we have done so in this paper).
In order to achieve high accuracy on complex
problem domains, segmentation and recogni-
tion cannot be treated independently. How-
ever, a simple problem domain can use more
basic techniques and still achieve high accu-
racy.

Dissection is the decomposition of the in-
put image into a sequence of subimages. The
criterion for good segmentation using the dis-
section approach is the agreement of charac-
ter properties in the segmented subimage and
the expected symbol. The character prop-
erties include height, width, separation from
neighboring components, disposition along
the baseline, etc. Interaction with the clas-
sifier is limited to reprocessing of ambiguous
recognition results. For example, if the clas-
sifier can’t make any decision at all, the seg-
ment may need to be re-split into two new
segments.

The earliest and simplest form of dissection
relies on vertical whitespace between succes-
sive characters. To make segmentation even
easier, a fixed pitch if often used (pitch is the
number of characters per unit of horizontal
distance). In applications that use machines
to print the text, text is often printed with a
fixed pitch using limited font sets. Hoffman
and Mccullough [7] designed a system that
could aid in segmentation when a fixed pitch
could not be enforced. The system consisted
of three steps: 1) detection of the start of
a character based on an a priori pitch mea-
surement, 2) a decision to begin testing for
the end of the character, and 3) detection of
the end of a character. The authors reported
a 97% accuracy, but the results were heavily
dependent on the quality of the input image.

Projection analysis is another simple one-
dimensional segmentation method that uses

the vertical projection (or vertical his-
tograms) of “on” pixels to determine dissec-
tion candidates. A vertical projection is sim-
ply a column-wise count of “on” pixels. If the
count falls below a predefined threshold, the
column is a candidate for splitting the image.
The segmentation boundaries can be further
emphasized by observing the derivative of the
vertical projection data (well-defined peaks
will occur at the character boundaries). Pro-
jection analysis works well on high quality
machine printed documents. However, verti-
cal projection performs poorly on text which
is italicized machine printed text, handwrit-
ten text (naturally slanted), or has not been
properly skew-corrected.

In graph theory, a connected component
is a maximal connected subgraph where two
vertices belong to the same connected com-
ponent if and only if there is a path between
them. Connected component analysis can be
applied to character segmentation by view-
ing the character’s pixels as block or line ad-
jacency graphs. Intuitively, a character is a
single connected component because all pix-
els “touch” each other (with the exceptions
of i’s and j’s). Connected component analy-
sis is a two-dimensional analysis that works
well on proportional fonts and handwritten
characters. Connected component analysis
works by labeling connected areas of black
pixels as components. The components are
further processed by drawing bounding boxes
around them or based on a detailed analysis
of the image. Predefined rules are specified to
determine the maximum or minimum size of
the bounding boxes. Unfortunately, if char-
acters are broken into multiple pieces (due
to pre-processing artifacts, noise, etc.), con-
nected component analysis yields poor seg-
mentation results.

3

Classification-based segmentation bypasses
the requirement to discretely segment the
word. No complex dissection algorithm is
required. Instead, the segmenter interacts
directly with the classifier. Without regard
to content, a mobile variable-width window
blindly divides the image into many overlap-
ping pieces and chooses the correct segmenta-
tion based on the classifier’s confidence of the
sampled window. Therefore, the criterion for
good segmentation is the classification confi-
dence given by the classifier of the subimage.

If the words to be recognized are dictionary
words, N-gram statistics can be introduced to
classification-based approaches to prune the
search space [8]. For example, assuming we
have already recognized the letters ‘t’ and ‘h’,
there is a higher probability that the next let-
ter is an ‘e’ instead of a ‘c’. After narrowing
the possible guesses, a dictionary can be used
to eliminate incorrectly spelled words in favor
of correctly spelled words.

Holistic approaches attempt to recognize
entire words as single units. The criterion
for good segmentation are same as the crite-
rion for good dissection, but using words as
the alphabet instead of individual symbols or
characters. Unlike the previously mentioned
methods, a holistic approach requires a pre-
defined lexicon. For many applications, such
as check recognition or postal code reading,
this constraint is satisfiable.

2.1.3 Character classification

Character classification is strongly dependent
on feature vectors which are extracted from
the characters. Feature extraction is the pro-
cess of transforming the input data into a
reduced representation. It is commonly em-
ployed when their is too much input data to
efficiently process or if the input data is re-
dundant (lots of data but not much informa-

tion). This simplification of the input image
provides an accurate description of a larger
set of data. A common feature vector is im-
age projections which represent the charac-
ter as a vector of projection counts (discussed
above). Naive methods feed entire image ma-
trices to the classifier, while others require
experts to develop visual cues to distinguish
characters from one another [13]. However,
if no such experts exist, other dimensional-
ity reductions, such as Principle Component
Analysis (PCA), can still be performed. PCA
is used to reduce the dimensionality of multi-
dimensional data sets by removing charac-
teristics about the data which have low im-
pact on the variance of the overall dataset.
Similarly, it attempts to retain characteris-
tics which contribute most to its variance.

Once the feature vectors are computed,
classification can be performed. Classifica-
tion can be done by finding the nearest neigh-
bor, neural networks [10, 1, 13], or other tech-
niques. However, the classification method is
largely non-important in the recognition pro-
cess; by far the most important decision is
the selection of features.

2.2 HIPs

Human Interactive Proofs (HIPs) are a class
of automated challenges used to differenti-
ate between legitimate human users and au-
tomated, malicious robots on the internet.
HIPs have many practical security applica-
tions, including preventing the abuse of on-
line services such as free email providers.
The term HIP is preferred over the more
common (and unfortunately trademarked)
term, Completely Automated Public Turing
tests to tell Computers and Humans Apart
(CAPTCHAs). HIP challenges should be
easy for a machine to automatically generate,
easy for a human to solve, and difficult, or im-

4

possible, for another machine to solve. The
key to developing a successful HIP challenge
is to choose a difficult artificial intelligence
problem where a gap exists between human
and machine capabilities.

Researchers have suggested HIPs based on
hard artificial intelligence problems such as
natural language processing [16], character
recognition [4], image understanding [5], and
speech recognition [9]. Most commercial im-
plementations require the user to transcribe
a string of distorted characters with back-
ground noise. This type of HIP can be con-
sidered broken through techniques such as
shape matching [11], distortion estimation
[12], and even simple pattern recognition [17].
Unfortunately, most commercial implementa-
tions are even easier to break than the re-
search/academic implementations (as this ex-
periment clearly demonstrates).

3 Method

To break the PayPal.com HIP, the problem
can be reduced to an OCR task. As men-
tioned before, the OCR task can be bro-
ken down into three steps: pre-processing,
segmentation, and classification. For clarity
sake, the code is also separated into these
three distinct steps.

3.1 Pre-processing

The pre-processing step is arguably the most
important step when the image contains ad-
versarial noise (such as HIPs). The noise
placed on top of the HIP challenge images
is designed to confuse off-the-shelf OCR sys-
tems. Before successful segmentation or clas-
sification can occur, the noise must be re-
moved. The first step in our process is to
convert the image to greyscale. The im-

age is then thresholded to remove the noise
(horizontal and vertical lines). The back-
ground thresholding technique is incredibly
simple but removes nearly all of the noise
in the image. Occasionally, additional noise
still remains after this step. Therefore, addi-
tional cleaning is performed to remove pixels
where the entire row has very few “on” pix-
els. A bounding box is then placed around
the string of characters and cropped out.

(a) The original HIP image.

(b) After greyscaling.

(c) After thresholding.

(d) After cleaning.

(e) After bounding.

Figure 1: The pre-processing step.

3.2 Segmentation

Next, the pre-processed image is fed into
the segmenter. A connected components ap-
proach was first attempt, but unfortunately
the pre-processing step occasionally breaks
characters into multiple segments (see the
first character in Figure 2a). However, the
segmentation process is simplified because
the PayPal HIP is always rendered with ex-
actly five characters. Vertical projections [7]
and candidate split positions are used to de-

5

termine segmentation boundaries. Splitting
on every projection with zero “on” pixels oc-
casionally causes characters to be split into
multiple segments (as was the problem with
the CC-based approach). However, empirical
exploration shows that every character is at
least ten pixels wide. A Hoffman and Mccul-
lough style approach [7] is used and a column-
wise scan is performed from the left side of the
image to the right side. When the start of a
character is detected, ten pixels are skipped
and the scan is continued. When the end of a
character is detected, the segment is cropped
out of the image. The segment is padded out
using 0’s to a fixed size (20×20) as a require-
ment of the classification process (correlation
requires that the dimensions of the two ma-
trices must agree). This process is repeated
until the end of the image has been reached.

(a) Input to segmenter.

(b) Vertical projection analysis.

(c) After splitting the image.

(d) After padding.

Figure 2: The segmentation step.

3.3 Classification

The segmenter feeds the five individual char-
acters to the classifier. Note that the in-
put images are binary images, consisting of

1’s for the foreground (the character) and 0’s
for the background. The classification pro-
cedures (defined below) are invoked with the
unknown sample image I and the set of tem-
plate images T . Several of the classifiers com-
puted correlation coefficients. The correla-
tion coefficient (Corr2) between two input
vectors or matrices i and j, can be computed
as follows:∑

m

∑
n(imn − i)(jmn − j)√(∑

m

∑
n(imn − i)2

)(∑
m

∑
n(jmn − j)2

)
where i is the mean of the input matrix i and
j is the mean of the input matrix j.

3.3.1 Pixel Counting

The pixel counting classifier compares the
Euclidean distance between pixel counts.
The pixels for a binary image I can be
counted using the following algorithm:

PixelCount(I)

1 k ← 0
2 for r ← 1 to InumRows

3 do for c← 1 to InumCols

4 do k ← k + I[r][c]
5 return k

The pixel count of the input image is then
compared against the pixel counts of each of
the template images. The index of the tem-
plate that has the least difference in pixel
count is returned as the match:

ClassifyPC(I, T)

1 D ← ∅
2 for each Template ti ∈ T
3 do di ← abs(PixelCount(ti) -
4 PixelCount(I))
5 return k such that dk = min(D)

6

Note that this method does not take any spa-
tial layout into account. Therefore, an image
with a pixel in each of it’s four corners will
match perfectly with a template image with a
block of four pixels in the center of the image,
even though they are visually dissimilar.

3.3.2 Vertical Projections

The vertical projection classifier compares
correlation coefficients of vertical projections.
The vertical projection of an image I can be
calculated using the following algorithm:

VerticalProjection(I)

1 V ← ∅
2 for r ← 1 to InumRows

3 do for c← 1 to InumCols

4 do vc ← vc + I[r][c]
5 return V

The vertical projection of the input image is
then compared against the vertical projec-
tions of each of the template images. The
index of the template whose vertical projec-
tion has the the highest correlation coefficient
with the input image’s vertical projection is
returned as the match:

ClassifyVP(I, T)

1 R← ∅
2 for each Template ti ∈ T
3 do ri ← Corr2(
4 VerticalProjection(ti),
5 VerticalProjection(I))
6 return k such that rk = max(R)

3.3.3 Horizontal Projections

The horizontal projection classifier compares
correlation coefficients of horizontal projec-
tions. The horizontal projection of an image
I can be calculated using the following algo-
rithm:

Figure 3: VP confidences for “C6X62”.

HorizontalProjection(I)

1 V ← ∅
2 for r ← 1 to InumRows

3 do for c← 1 to InumCols

4 do vr ← vr + I[r][c]
5 return V

The horizontal projection of the input image
is then compared against the horizontal pro-
jections of each of the template images. The
index of the template whose horizontal pro-
jection has the the highest correlation coeffi-
cient with the input image’s horizontal pro-
jection is returned as the match:

7

ClassifyHP(I, T)

1 R← ∅
2 for each Template ti ∈ T
3 do ri ← Corr2(
4 HorizontalProjection(ti),
5 HorizontalProjection(I))
6 return k such that rk = max(R)

Figure 4: HP confidences for “C6X62”.

3.3.4 Template Correlations

The template correlation classifier calculates
the 2D correlation coefficients for the input
image I and the templates T . The index of
the template with the highest 2D correlation
coefficient with the input image is returned
as the match:

ClassifyTC(I, T)

1 R← ∅
2 for each Template ti ∈ T
3 do ri ← Corr2(ti, I)
4 return k such that rk = max(R)

Figure 5: TC confidences for “C6X62”.

4 Training

The templates were created from a set of
twenty training PayPal HIPs. The set of im-
ages were randomly chosen and contain all
characters in the character set (note that Pay-
Pal does not use I, O, Q, 0, or 1 in the char-
acter set to increase usability for humans).
The images were processed using the same
pre-processing and segmentation algorithm
as specified above. In many cases, the train-
ing data has multiple samples for a given

8

character c: sc
1, s

c
2, · · · , sc

n. If multiple sam-
ples for a single character c exist, the final
template tc is computed by averaging all sam-
ples for a given character:

tc =
(n∑

i=1

sc
i

)
/n

Informally, this creates more robust tem-
plates, as we are using multiple training sam-
ples to generate the templates. It can be
thought of as many training samples voting
on whether or not the ground truth should
contain a given pixel.

5 Results

5.1 Testing Results

A sample of 100 random PayPal HIPs were
used for testing. The samples were manu-
ally downloaded and labeled by visual inspec-
tion. The same pre-processing and segmen-
tation algorithms were used for all classifiers.
The classifiers are evaluated with several met-
rics: HIP accuracy refers to the percentage
of the 100 testing samples which were cor-
rectly recognized. Character accuracy refers
to the percentage of the 500 characters of
the 100 testing samples which were correctly
recognized. The HIP accuracy should be
roughly equal to character accuracy raised to
the fifth power (serial repetition). The classi-
fiers which utilize correlation can also return
a confidence value. The character confidence
can be represented by the correlation coeffi-
cient (1.0 means a perfect match). A over-
all string confidence C can be calculated by
multiplying each of the character correlation
coefficients ri together:

C =
5∏

i=1

ri

Note that this confidence metric cannot be
used with the pixel counting classifier because
the that classifier does not utilize correlation
during classification. Running time, mea-
sured in seconds, was clocked on a 2 GHz Intel
Core 2 Duo with 2 GB of memory, running
Mac OS X 10.4.11 and MATLAB R2007a.
Full outputs from all four classifiers are lo-
cated in Appendix B.

The following is a comparison of the four
classifiers: pixel counting (PC), vertical
projections (VP), horizontal projections
(HP), and template correlations (TC).

PC VP HP TC

AChar 63.2% 99.4% 100% 100%
AHIP 8% 97% 100% 100%
Cavg n/a 98.9% 98.8% 95.9%
Cmin n/a 89.1% 93.9% 67.9%
Tavg 0.02s 0.06s 0.06s 0.06s

where AChar is the character accuracy, AHIP

is the HIP accuracy, Cavg is the average
overall string confidence, Cmin is the lowest
overall string confidence observed during
testing, and Tavg is the average recognition
running time in seconds.

The only benefit that the pixel count-
ing method has over the others is run
time. The vertical projection classifier made
three misclassifications: ‘27LP5’ recognized
as ‘27LP2’, ‘5RESL’ recognized as ‘2RESL’,
and ‘5SMWJ’ recognized as ‘2SMWJ’. We
can see that all three mistakes were made due
to a misclassification of a ‘5’ as a ‘2’. This
shows that vertical projections are not a suf-
ficient method for differentiating between 5’s
and 2’s.

Figure 6 plots the confidence of the three
classifiers (vertical projections shown in blue,
horizontal projections shown in green, and
template correlations shown in red) for all
100 testing samples. We can see that even

9

though they use different classification tech-
niques, the confidence values seem to be con-
sistent with one another. That is to say, that
all three classifiers achieve low confidences on
the same images. For example, sample #72
achieved very low confidence for both the hor-
izontal projection and template correlation
classifiers. Similarly, all three classifiers per-
formed very well on sample #28. This in-
dicates that samples with low confidence val-
ues may exhibit some pre-processing artifacts
that make classification a difficult task, no
matter what the technique.

Figure 6: A comparison of confidences for
the 100 test samples. VP=blue, HP=green,
TC=red.

5.2 Example

This section visually demonstrates the entire
recognition process using an example Pay-
Pal HIP image. Figure 1 illustrates the pre-
processing step. Figure 2 displays the the seg-
mentation process. Figure 3 shows the confi-
dence values for the vertical projection clas-
sifier. The overall confidence for the example
HIP is 0.992 (0.995 ∗ 0.999 ∗ 1.0 ∗ 0.998 ∗ 1.0).
Notice that there are several other characters
with very high confidences. Figure 4 shows
the confidence values for the horizontal pro-
jection classifier. The overall confidence for
the example HIP is 0.994 (0.995 ∗ 1.0 ∗ 1.0 ∗
0.999 ∗ 1.0). Notice that the range of the
confidence values is fairly small and several
peaks exist. Figure 5 shows the confidence
values for the template correlation classifier.
The overall confidence for the example HIP
is 0.992 (1.0 ∗ 0.999 ∗ 0.997 ∗ 0.996 ∗ 1.0). No-
tice that there is only a single peak in the
confidence values for every character. This
indicates that the classifier is very good at
discriminating between character classes.

6 Conclusion

We have presented a robust way to auto-
matically recognizing the character strings
inside of a PayPal.com HIP using a three
step pre-process, segment, classify algorithm.
Four classifiers (pixel counting, vertical pro-
jections, horizontal projections, and template
correlations) were implemented, evaluated,
and compared. Two of the classifiers have
achieved perfect HIP accuracy on the test set
of 100 images. Upon visual inspection of the
correlation coefficients for several test images,
we see that the template correlation classifier
discriminates better than the other classifiers
and is strongly recommended.

10

References

[1] Hadar I. Avi-Itzhak, Thanh A. Diep,
and Harry Garland. High accuracy op-
tical character recognition using neu-
ral networks with centroid dithering.
IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 17(2):218–
224, February 1995.

[2] Richard G. Casey and Eric Lecolinet. A
survey of methods and strategies in char-
acter segmentation. IEEE Transactions
on Pattern Analysis and Machine Intel-
ligence, 18(7):690–706, July 1996.

[3] Kumar Chellapilla and Patrice Y.
Simard. Using machine learning to break
visual human interaction proofs (HIPs).
In Lawrence K. Saul, Yair Weiss, and
Léon Bottou, editors, Advances in Neu-
ral Information Processing Systems 17,
pages 265–272, Cambridge, MA, Decem-
ber 2004. MIT Press.

[4] Monica Chew and Henry S. Baird. Baf-
fletext: A human interactive proof. In
IST/SPIE Document Recognition and
Retrieval X Conference, pages 305–316,
January 2003.

[5] Monica Chew and J. Doug Tygar. Image
recognition captchas. In Kan Zhang and
Yuliang Zheng, editors, In Proceedings of
the 7th International Information Secu-
rity Conference (ISC 2004), volume 3225
of Lecture Notes in Computer Science,
pages 268–279, Palo Alto, CA, Septem-
ber 2004. Springer Berlin / Heidelberg.

[6] Sam Hocevar. Pwntcha. Online
http://libcaca.zoy.org/wiki/PWNtcha,
January 2005.

[7] Richard L. Hoffman and J. Warren Mc-
Cullough. Segmentation Methods for
Recognition of Machine-Printed Charac-
ters. IBM Journal of Research and De-
velopment, 15(2):153–165, March 1971.

[8] Jr. Kenneth Crawford Hayes. Reading
handwritten words using hierarchical re-
laxation. In Computer Graphics and Im-
age Processing, volume 14, pages 344–
364, December 1980.

[9] Greg Kochanski, Daniel P. Lopresti, and
Chilin Shih. A reverse turing test us-
ing speech. In Proceedings of the 7th In-
ternational Conference on Spoken Lan-
guage Processing, pages 1357–1360, Den-
ver, Colorado, September 2002.

[10] Nallasamy Mani and Bala Srinivasan.
Application of artificial neural network
model for optical character recognition.
In International Conference on Systems,
Man and Cybernetics, volume 3, pages
2517–2520. IEEE Computer Society, Oc-
tober 1997.

[11] Greg Mori and Jitendra Malik. Rec-
ognizing objects in adversarial clutter:
breaking a visual captcha. In Conference
on Computer Vision and Pattern Recog-
nition, volume 1, pages 134–141, Madi-
son, WI, USA, June 2003. IEEE Com-
puter Society.

[12] Gabriel Moy, Nathan Jones, Curt Hark-
less, and Randall Potter. Distortion
estimation techniques in solving visual
captchas. In Conference on Computer
Vision and Pattern Recognition, vol-
ume 02, pages 23–28, Los Alamitos, CA,
USA, June 2004. IEEE Computer Soci-
ety.

11

[13] E.M. de A. Neves, A. Gonzaga, and
A.F.F. Slaets. A multi-font character
recognition based on its fundamental
features by artificial neural networks. In
Proceedings of the 2nd Workshop on Cy-
bernetic Vision, pages 196–201, Decem-
ber 1996.

[14] Wikipedia. Optical character recogni-
tion — wikipedia, the free encyclopedia,
2008. [Online; accessed 8-May-2008].

[15] R. Allen Wilkinson and Michael D.
Garris. Comparison of massively par-
allel hand-print segmenters. Techni-
cal report, National Institute of Stan-
dards and Technology (CSL). Advanced
Systems Division, Gaithersburg, MD,
September 1992.

[16] Pablo Ximenes, Andre dos Santos, Mar-
cial Fernandez, and Joaquim Celesti. A
captcha in the text domain. In R. Meers-
man, Z. Tari, and P. Herrero, editors,
On the Move to Meaningful Internet
Systems Workshop, volume 4277/2006
of Lecture Notes in Computer Science,
pages 605–615. Springer Berlin / Heidel-
berg, November 2006.

[17] Jeff Yan and Ahmad Salah El Ahmad.
Breaking visual captchas with naive pat-
tern recognition algorithms. In Proceed-
ings of the 23rd Annual Computer Secu-
rity Applications Conference, pages 279–
291, December 2007.

Appendices

A MATLAB Code

This section contains the MATLAB code
used to break the PayPal HIP. The code is
thoroughly commented and should be self ex-
planatory.

A.1 recognizeAll.m
function recognizeAll()

% Performs recognition of the entire testing set of PayPal CAPTCHA images

% by preprocessing, segmentation, and classification.

%

% Created by Kurt Alfred Kluever (kurt@kloover.com)

testingDir = ’testing/’;

testingSamples = dir(strcat(testingDir, ’*.jpg’));

numTestingSamples = size(testingSamples, 1);

charCorrect = 0;

charWrong = 0;

hipCorrect = 0;

confidences = zeros(1, numTestingSamples);

tic

% For each of the testing images...

for i=1:numTestingSamples

fn = strcat(testingDir, testingSamples(i).name);

% Perform recognition and record the result and confidence

[chars c] = recognize(fn);

confidences(i) = c;

fn = strrep(fn, testingDir, ’’);

fn = strrep(fn, ’.jpg’, ’’);

% Print out the results

fprintf(’Actual: %s Decoded: %s Confidence: %f’, fn, chars, c);

if (strcmp(fn, chars) == 0)

fprintf(’ Incorrect\n’);

else

fprintf(’ Correct\n’);

hipCorrect = hipCorrect + 1;

end

for j=1:5

if (strcmp(fn(j), chars(j)) == 0)

charWrong = charWrong + 1;

else

charCorrect = charCorrect + 1;

end

end

end

toc

charAcc = charCorrect / (charCorrect + charWrong);

hipAcc = hipCorrect / numTestingSamples;

avgConfidence = sum(confidences) / numTestingSamples;

minConfidence = min(confidences);

fprintf(’Character Accuracy: %f\n’, charAcc);

fprintf(’HIP Accuracy: %f\n’, hipAcc);

fprintf(’Average confidence: %f\n’, avgConfidence);

fprintf(’Minimum confidence: %f\n’, minConfidence);

end

12

A.2 recognize.m
function [decoded confidence] = recognize(imageFileName)

% Performs recognition of PayPal CAPTCHA images by preprocessing,

% segmentation, and classification. To switch which classifier is being

% used, simply uncomment out the one you wish to use!

%

% Created by Kurt Alfred Kluever (kurt@kloover.com)

% If the templates haven’t been created yet, make them now!

if (exist(’templates.mat’, ’file’) == 0)

fprintf(’Training templates do not exist. Creating them now...’);

makeTemplates();

fprintf(’DONE\n’);

end

% 1. Load and preprocess the image

preprocessed = preprocess(imread(imageFileName));

% 2. Segmentation the image into characters

segmented = segment(preprocessed);

% 3. Classifiy the characters

[decoded confidence] = classify(segmented, ’PixelCounts’);

% [decoded confidence] = classify(segmented, ’VerticalProjections’);

% [decoded confidence] = classify(segmented, ’HorizontalProjections’);

% [decoded confidence] = classify(segmented, ’TemplateMatching’);

end

A.3 preprocess.m
function bounded = preprocess(i)

% Performs preprocessing on the input image. The image is first converted

% to greyscale and then thresholded. Random noise is removed via

% thresholding. A bounding box is then placed around the entire image.

% Returns the preprocessed image.

%

% Created by Kurt Alfred Kluever (kurt@kloover.com)

% Convert the color image to grey scale

greyScale = rgb2gray(i);

% Threshold out the background noise

thresholded = greyScale < 30;

% Remove any random noise that will hurt the char offset

rows = size(thresholded, 1);

row = 1;

while (row < rows)

rowSum = sum(thresholded(row,:));

if (rowSum < 5 && rowSum > 0)

thresholded(row,:) = 0;

end

row = row + 1;

end

% Place a bounding box around the image

bb = regionprops(double(thresholded), ’BoundingBox’);

% Crop out the contents of the bounding box

bounded = imcrop(thresholded, bb.BoundingBox);

end

A.4 segment.m
function [retVal] = segment(bounded)

% Performs character segmentation of the preprocessed input image.

% Returns the segmented set of characters.

%

% Created by Kurt Alfred Kluever (kurt@kloover.com)

% Create the return value (5 images, 20x20 in size)

retVal = zeros(20, 20, 5);

% Get the size of the input image

[rows cols] = size(bounded);

col=3;

startCol = 1;

charIndex = 1;

% While we aren’t at the end of the image...

while(col < cols)

col = col + 10;

% Scan forward while columns contain data

while (col+2 <= cols) && (sum(sum(bounded(:,col:col+2))) > 0)

col = col + 1;

end

% Crop the character out of the image

a = imcrop(bounded, [startCol 1 (col - startCol) rows]);

% Pad out to 20 rows and 20 cols with 0’s

[charRows charCols] = size(a);

a = padarray(a, [(20 - charRows) (20 - charCols)], ’post’);

% Set the character into the return value

retVal(:,:,charIndex) = a;

% Increment the characters index

charIndex = charIndex + 1;

% Increment the column counter

col = col + 1;

startCol = col;

% Advance the column counter while there is white space

while (col <= cols) && (sum(sum(bounded(:,col))) == 0)

col = col + 1;

startCol = startCol + 1;

end

end

end

A.5 classify.m
function [decoded confidence] = classify(chars, method)

% Performs character classification of the segmented input image using

% pixel counts, vertical projections, horizontal projections, or template

% matching.

% Returns the classified string of characters and the confidence.

%

% Created by Kurt Alfred Kluever (kurt@kloover.com)

% Load the templates

load templates;

% Turn off the warnings about dividing by zero

warning off MATLAB:divideByZero

% Setup the decoded result

decoded = char(zeros(1,5));

% Confidence starts at 1.0 (perfect)

confidence = 1.0;

% For each of the 5 characters in the image...

for i=1:5

% Correlation results for all the template images

allCorrs = zeros(1, 36);

% For each of the templates...

for j=1:36

if (strcmp(method, ’PixelCounts’) == 1)

% Note that we subtract it from 50 so that we can still

% use max() to find the correct index below!

tempSum = sum(sum(templates(:,:,j)));

inSum = sum(sum(chars(:,:,i)));

allCorrs(j) = 50 - abs(tempSum - inSum);

elseif (strcmp(method, ’VerticalProjections’) == 1)

tempVP = sum(templates(:,:,j));

inVP = sum(chars(:,:,i));

allCorrs(j) = corr2(tempVP, inVP);

elseif (strcmp(method, ’HorizontalProjections’) == 1)

tempHP = sum(templates(:,:,j)’);

inHP = sum(chars(:,:,i)’);

allCorrs(j) = corr2(tempHP, inHP);

else % Do template matching by default

temp = templates(:,:,j);

in = chars(:,:,i);

allCorrs(j) = corr2(temp, in);

end

end

% Used for plotting data

% subplot(5,1,i); bar(abs(allCorrs));

% set(gca,’XTick’,1:36)

13

% set(gca,’YTick’,0:0.2:1)

%set(gca,’XTickLabel’,{’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,

% ’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,

% ’N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’})

% Find the first template with the best correlation

index = find(allCorrs == max(allCorrs), 1);

% Update the classification confidence

confidence = max(allCorrs) * confidence;

% Convert it from an index back into ASCII

if (index <= 10) % number

index = index + 47;

elseif (index >= 11 && index <= 36)% upper case character

index = index + 54;

else

% We should never get here

end

% Store the decoded character

decoded(i) = char(index);

end

end

A.6 makeTemplates.m
function makeTemplates()

% Creates the classification templates using a set of training images. The

% training images are labeled as ground truth by their filenames.

%

% Created by Kurt Alfred Kluever (kurt@kloover.com)

% Set aside room for the templates and the counts

templates = zeros(20,20,36);

counts = zeros(1,36);

% Load the images from the training directory

trainingDir = ’training/’;

trainingSamples = dir(strcat(trainingDir, ’*.jpg’));

[numTrainingSamples] = size(trainingSamples);

% For each of the training images...

for i=1:numTrainingSamples

filename = strcat(trainingDir, trainingSamples(i).name);

% Perform preprocessing

bounded = preprocess(imread(filename));

% Perform segmentation

chars = segment(bounded);

% Remove the directory name from the filename

filename = strrep(filename, trainingDir, ’’);

% For each of the characters...

for i=1:5

% Convert from ASCII character to ASCII int (an index)

asciiz = uint8(filename(i));

if (asciiz >= 48 && asciiz <= 57) % number

asciiz = asciiz - 47;

elseif (asciiz >= 65 && asciiz <=90) % upper case character

asciiz = asciiz - 54;

else

% We should never, ever get here!

end

% Add the template to the training library

templates(:,:,asciiz) = templates(:,:,asciiz) + chars(:,:,i);

% Update the number of times we have seen this character

counts(asciiz) = counts(asciiz) + 1;

end

end

% Go through and normalize (average) the templates

for i=1:36

templates(:,:,i) = templates(:,:,i) / counts(i);

end

% Save them out to the file for later

save(’templates.mat’, ’templates’, ’counts’);

end

B MATLAB Output

This section contains the output of the rec-
ognizeAll MATLAB script using the different
classifiers. The output contains the recog-
nition attempts for each of the 100 testing
samples, as well as the metrics on which the
classifiers are evaluated.

B.1 Pixel Counting
Actual: 27LP5 Decoded: 27V62 Confidence: 302190625.000000 Incorrect

Actual: 2CAD2 Decoded: 24AD2 Confidence: 304166666.666667 Incorrect

Actual: 2GX7T Decoded: 2S87T Confidence: 303125000.000000 Incorrect

Actual: 2MR5A Decoded: 5MB2A Confidence: 300152222.222222 Incorrect

Actual: 2YGS4 Decoded: 2YGS4 Confidence: 295082083.333333 Correct

Actual: 373MH Decoded: 373MH Confidence: 291946875.000000 Correct

Actual: 3B5T3 Decoded: 3B5T3 Confidence: 286080000.000000 Correct

Actual: 3EYHU Decoded: 33YHT Confidence: 309375000.000000 Incorrect

Actual: 3HKSY Decoded: 3HKSJ Confidence: 307312500.000000 Incorrect

Actual: 45V7U Decoded: 45V7T Confidence: 298099816.203704 Incorrect

Actual: 4BK54 Decoded: 4BK54 Confidence: 300165742.592593 Correct

Actual: 4EE3C Decoded: 43334 Confidence: 296096111.111111 Incorrect

Actual: 4R2WH Decoded: 4B2WH Confidence: 305775937.500000 Incorrect

Actual: 4RCX4 Decoded: 4BC84 Confidence: 293114869.444444 Incorrect

Actual: 5LX29 Decoded: 5V829 Confidence: 302190625.000000 Incorrect

Actual: 5RESL Decoded: 2B3SV Confidence: 283318000.000000 Incorrect

Actual: 5SE4L Decoded: CS34L Confidence: 295020000.000000 Incorrect

Actual: 5SMWJ Decoded: 2SMWA Confidence: 300655833.333333 Incorrect

Actual: 6V2EP Decoded: 6V236 Confidence: 301173010.185185 Incorrect

Actual: 7KPZ3 Decoded: 7K6N3 Confidence: 301166250.000000 Incorrect

Actual: 8285R Decoded: 82G5B Confidence: 295082083.333333 Incorrect

Actual: 8HL84 Decoded: GHL84 Confidence: 304239375.000000 Incorrect

Actual: 8K6GS Decoded: GK6G6 Confidence: 290183720.750000 Incorrect

Actual: 9LLZK Decoded: 9VLZK Confidence: 300568125.000000 Incorrect

Actual: A4BL7 Decoded: 94BL7 Confidence: 298154587.500000 Incorrect

Actual: AU4CX Decoded: AT4C8 Confidence: 301104166.666667 Incorrect

Actual: AW94W Decoded: AWA4W Confidence: 301142968.750000 Incorrect

Actual: AZX7V Decoded: AN87V Confidence: 308343750.000000 Incorrect

Actual: B4ABZ Decoded: B4ABN Confidence: 304208333.333333 Incorrect

Actual: BDKJC Decoded: BDKAC Confidence: 303125000.000000 Incorrect

Actual: BE3S7 Decoded: B33S7 Confidence: 297123750.000000 Incorrect

Actual: BM9X8 Decoded: BMA8G Confidence: 299145000.000000 Incorrect

Actual: C3MLK Decoded: C3MLK Confidence: 293101666.666667 Correct

Actual: C3TH2 Decoded: 43TH2 Confidence: 295102500.000000 Incorrect

Actual: C6X62 Decoded: C6882 Confidence: 301104166.666667 Incorrect

Actual: C852Z Decoded: 4G52N Confidence: 287272447.000000 Incorrect

Actual: CAZMA Decoded: CANMA Confidence: 305250000.000000 Incorrect

Actual: CNDW7 Decoded: CNDW7 Confidence: 292621415.625000 Correct

Actual: CSSBK Decoded: LSSBK Confidence: 300125000.000000 Incorrect

Actual: DHUBH Decoded: DHTBH Confidence: 294152512.500000 Incorrect

Actual: DKGWG Decoded: DKGWG Confidence: 286709871.875000 Correct

Actual: E7XGT Decoded: 37889 Confidence: 300155625.000000 Incorrect

Actual: EC6YM Decoded: 3C6YM Confidence: 291147655.555555 Incorrect

Actual: EF3SP Decoded: 3F3S6 Confidence: 300731666.666667 Incorrect

Actual: EL2ZY Decoded: 3L2NY Confidence: 306250000.000000 Incorrect

Actual: EUYPS Decoded: 3TJ6S Confidence: 302180277.777778 Incorrect

Actual: F93UV Decoded: VT3TV Confidence: 294139173.611111 Incorrect

Actual: FUSGP Decoded: VTSG8 Confidence: 302114583.333333 Incorrect

Actual: FUTPC Decoded: FT96C Confidence: 288792619.500000 Incorrect

Actual: FYUYM Decoded: FYTYM Confidence: 292658333.333333 Incorrect

Actual: GBAR3 Decoded: 8BJB3 Confidence: 310416666.666667 Incorrect

Actual: GF3GD Decoded: GV3GD Confidence: 269425785.416667 Incorrect

Actual: GH25P Decoded: SH25G Confidence: 304239375.000000 Incorrect

Actual: GMLVU Decoded: SMLVT Confidence: 307305555.555556 Incorrect

Actual: GR2T4 Decoded: SB294 Confidence: 307312500.000000 Incorrect

Actual: GRY8X Decoded: SBY86 Confidence: 298124166.666667 Incorrect

Actual: GYPGJ Decoded: GY8GA Confidence: 288150625.000000 Incorrect

Actual: HN94A Decoded: HNA4A Confidence: 307312500.000000 Incorrect

Actual: HTJGD Decoded: HTASD Confidence: 297062500.000000 Incorrect

Actual: HX72C Decoded: H872C Confidence: 297092812.500000 Incorrect

Actual: J2LE3 Decoded: A2L33 Confidence: 306250000.000000 Incorrect

Actual: J4KCB Decoded: A4KCB Confidence: 289060000.000000 Incorrect

Actual: JM9SZ Decoded: AMTSN Confidence: 302166666.666667 Incorrect

Actual: JZ53E Decoded: AN533 Confidence: 298124166.666667 Incorrect

Actual: K8LY2 Decoded: KGLY2 Confidence: 297123750.000000 Incorrect

Actual: KBVUK Decoded: KBVTK Confidence: 305229166.666667 Incorrect

14

Actual: KWPRN Decoded: KW6BN Confidence: 296603125.000000 Incorrect

Actual: L4HGA Decoded: V4HSA Confidence: 302190625.000000 Incorrect

Actual: LK4YE Decoded: VK4J3 Confidence: 301173148.148148 Incorrect

Actual: LL6FJ Decoded: LLSV9 Confidence: 304218750.000000 Incorrect

Actual: M224L Decoded: M224V Confidence: 303208101.851852 Incorrect

Actual: M6AXZ Decoded: M6TSZ Confidence: 304647055.555556 Incorrect

Actual: M8H4U Decoded: MGH4T Confidence: 296126325.000000 Incorrect

Actual: MG8ES Decoded: MGG3S Confidence: 292131262.500000 Incorrect

Actual: NU8JM Decoded: NTGAM Confidence: 301125000.000000 Incorrect

Actual: NYPU3 Decoded: NY8T3 Confidence: 306250000.000000 Incorrect

Actual: P2N4P Decoded: 62N48 Confidence: 308347222.222222 Incorrect

Actual: R32WR Decoded: B32WB Confidence: 298624375.000000 Incorrect

Actual: RDPL2 Decoded: BD6V2 Confidence: 287172666.666667 Incorrect

Actual: RNWBS Decoded: BNWBS Confidence: 310937500.000000 Incorrect

Actual: RP5GX Decoded: B65S8 Confidence: 308347222.222222 Incorrect

Actual: S9FES Decoded: STF3S Confidence: 308928571.428571 Incorrect

Actual: TBLU2 Decoded: TBLT2 Confidence: 312500000.000000 Incorrect

Actual: TGBSX Decoded: TGBS8 Confidence: 303125000.000000 Incorrect

Actual: U3V4C Decoded: T3V4C Confidence: 294098476.388889 Incorrect

Actual: UE64X Decoded: T3648 Confidence: 300152222.222222 Incorrect

Actual: UWUCH Decoded: TWTCH Confidence: 304749843.750000 Incorrect

Actual: W4GKY Decoded: W4SKY Confidence: 299645208.333333 Incorrect

Actual: W9B2K Decoded: W9B2K Confidence: 292666893.750000 Correct

Actual: XA3FW Decoded: 6A3VW Confidence: 301678334.027778 Incorrect

Actual: XCERZ Decoded: GC3BN Confidence: 300093750.000000 Incorrect

Actual: XKSLN Decoded: 8K6VN Confidence: 305243055.555556 Incorrect

Actual: XWET3 Decoded: 8W3T3 Confidence: 298500000.000000 Incorrect

Actual: YAWG2 Decoded: YAWS2 Confidence: 310937500.000000 Incorrect

Actual: YBAUK Decoded: YWATK Confidence: 295312500.000000 Incorrect

Actual: YRN26 Decoded: YBN26 Confidence: 298124166.666667 Incorrect

Actual: YT4TZ Decoded: Y949N Confidence: 298154587.500000 Incorrect

Actual: Z69AB Decoded: NS9JB Confidence: 301166250.000000 Incorrect

Actual: ZXTRV Decoded: N8TBV Confidence: 311458333.333333 Incorrect

Actual: ZYZBH Decoded: ZYNBH Confidence: 293436000.000000 Incorrect

Elapsed time is 2.787840 seconds.

Character Accuracy: 0.632000

HIP Accuracy: 0.080000

Average confidence: 299477068.519656

Minimum confidence: 269425785.416667

B.2 Vertical Projections
Actual: 27LP5 Decoded: 27LP2 Confidence: 0.976889 Incorrect

Actual: 2CAD2 Decoded: 2CAD2 Confidence: 0.999403 Correct

Actual: 2GX7T Decoded: 2GX7T Confidence: 0.997374 Correct

Actual: 2MR5A Decoded: 2MR5A Confidence: 0.966513 Correct

Actual: 2YGS4 Decoded: 2YGS4 Confidence: 0.996232 Correct

Actual: 373MH Decoded: 373MH Confidence: 0.997336 Correct

Actual: 3B5T3 Decoded: 3B5T3 Confidence: 0.971717 Correct

Actual: 3EYHU Decoded: 3EYHU Confidence: 0.999560 Correct

Actual: 3HKSY Decoded: 3HKSY Confidence: 0.997098 Correct

Actual: 45V7U Decoded: 45V7U Confidence: 0.972766 Correct

Actual: 4BK54 Decoded: 4BK54 Confidence: 0.974106 Correct

Actual: 4EE3C Decoded: 4EE3C Confidence: 0.997275 Correct

Actual: 4R2WH Decoded: 4R2WH Confidence: 0.983383 Correct

Actual: 4RCX4 Decoded: 4RCX4 Confidence: 0.999162 Correct

Actual: 5LX29 Decoded: 5LX29 Confidence: 0.973967 Correct

Actual: 5RESL Decoded: 2RESL Confidence: 0.970542 Incorrect

Actual: 5SE4L Decoded: 5SE4L Confidence: 0.967560 Correct

Actual: 5SMWJ Decoded: 2SMWJ Confidence: 0.960504 Incorrect

Actual: 6V2EP Decoded: 6V2EP Confidence: 0.998750 Correct

Actual: 7KPZ3 Decoded: 7KPZ3 Confidence: 0.997631 Correct

Actual: 8285R Decoded: 8285R Confidence: 0.972187 Correct

Actual: 8HL84 Decoded: 8HL84 Confidence: 0.997577 Correct

Actual: 8K6GS Decoded: 8K6GS Confidence: 0.995977 Correct

Actual: 9LLZK Decoded: 9LLZK Confidence: 0.998529 Correct

Actual: A4BL7 Decoded: A4BL7 Confidence: 0.891131 Correct

Actual: AU4CX Decoded: AU4CX Confidence: 0.997247 Correct

Actual: AW94W Decoded: AW94W Confidence: 0.965818 Correct

Actual: AZX7V Decoded: AZX7V Confidence: 0.999481 Correct

Actual: B4ABZ Decoded: B4ABZ Confidence: 0.999381 Correct

Actual: BDKJC Decoded: BDKJC Confidence: 0.998347 Correct

Actual: BE3S7 Decoded: BE3S7 Confidence: 0.998217 Correct

Actual: BM9X8 Decoded: BM9X8 Confidence: 0.997814 Correct

Actual: C3MLK Decoded: C3MLK Confidence: 0.998588 Correct

Actual: C3TH2 Decoded: C3TH2 Confidence: 0.997867 Correct

Actual: C6X62 Decoded: C6X62 Confidence: 0.999225 Correct

Actual: C852Z Decoded: C852Z Confidence: 0.971098 Correct

Actual: CAZMA Decoded: CAZMA Confidence: 0.998813 Correct

Actual: CNDW7 Decoded: CNDW7 Confidence: 0.982417 Correct

Actual: CSSBK Decoded: CSSBK Confidence: 0.994183 Correct

Actual: DHUBH Decoded: DHUBH Confidence: 0.998789 Correct

Actual: DKGWG Decoded: DKGWG Confidence: 0.982206 Correct

Actual: E7XGT Decoded: E7XGT Confidence: 0.995325 Correct

Actual: EC6YM Decoded: EC6YM Confidence: 0.998932 Correct

Actual: EF3SP Decoded: EF3SP Confidence: 0.996486 Correct

Actual: EL2ZY Decoded: EL2ZY Confidence: 0.997153 Correct

Actual: EUYPS Decoded: EUYPS Confidence: 0.998035 Correct

Actual: F93UV Decoded: F93UV Confidence: 0.996609 Correct

Actual: FUSGP Decoded: FUSGP Confidence: 0.997908 Correct

Actual: FUTPC Decoded: FUTPC Confidence: 0.997816 Correct

Actual: FYUYM Decoded: FYUYM Confidence: 0.997840 Correct

Actual: GBAR3 Decoded: GBAR3 Confidence: 0.995165 Correct

Actual: GF3GD Decoded: GF3GD Confidence: 0.997139 Correct

Actual: GH25P Decoded: GH25P Confidence: 0.971557 Correct

Actual: GMLVU Decoded: GMLVU Confidence: 0.998557 Correct

Actual: GR2T4 Decoded: GR2T4 Confidence: 0.997531 Correct

Actual: GRY8X Decoded: GRY8X Confidence: 0.995025 Correct

Actual: GYPGJ Decoded: GYPGJ Confidence: 0.997729 Correct

Actual: HN94A Decoded: HN94A Confidence: 0.998921 Correct

Actual: HTJGD Decoded: HTJGD Confidence: 0.997868 Correct

Actual: HX72C Decoded: HX72C Confidence: 0.998697 Correct

Actual: J2LE3 Decoded: J2LE3 Confidence: 0.999015 Correct

Actual: J4KCB Decoded: J4KCB Confidence: 0.998579 Correct

Actual: JM9SZ Decoded: JM9SZ Confidence: 0.997847 Correct

Actual: JZ53E Decoded: JZ53E Confidence: 0.972809 Correct

Actual: K8LY2 Decoded: K8LY2 Confidence: 0.998339 Correct

Actual: KBVUK Decoded: KBVUK Confidence: 0.999290 Correct

Actual: KWPRN Decoded: KWPRN Confidence: 0.983888 Correct

Actual: L4HGA Decoded: L4HGA Confidence: 0.998319 Correct

Actual: LK4YE Decoded: LK4YE Confidence: 0.997780 Correct

Actual: LL6FJ Decoded: LL6FJ Confidence: 0.997150 Correct

Actual: M224L Decoded: M224L Confidence: 0.999451 Correct

Actual: M6AXZ Decoded: M6AXZ Confidence: 0.895080 Correct

Actual: M8H4U Decoded: M8H4U Confidence: 0.998581 Correct

Actual: MG8ES Decoded: MG8ES Confidence: 0.997565 Correct

Actual: NU8JM Decoded: NU8JM Confidence: 0.998089 Correct

Actual: NYPU3 Decoded: NYPU3 Confidence: 0.997687 Correct

Actual: P2N4P Decoded: P2N4P Confidence: 0.999295 Correct

Actual: R32WR Decoded: R32WR Confidence: 0.983157 Correct

Actual: RDPL2 Decoded: RDPL2 Confidence: 0.995750 Correct

Actual: RNWBS Decoded: RNWBS Confidence: 0.982853 Correct

Actual: RP5GX Decoded: RP5GX Confidence: 0.972836 Correct

Actual: S9FES Decoded: S9FES Confidence: 0.996818 Correct

Actual: TBLU2 Decoded: TBLU2 Confidence: 0.999953 Correct

Actual: TGBSX Decoded: TGBSX Confidence: 0.997203 Correct

Actual: U3V4C Decoded: U3V4C Confidence: 0.998725 Correct

Actual: UE64X Decoded: UE64X Confidence: 0.995831 Correct

Actual: UWUCH Decoded: UWUCH Confidence: 0.982718 Correct

Actual: W4GKY Decoded: W4GKY Confidence: 0.983459 Correct

Actual: W9B2K Decoded: W9B2K Confidence: 0.983053 Correct

Actual: XA3FW Decoded: XA3FW Confidence: 0.981909 Correct

Actual: XCERZ Decoded: XCERZ Confidence: 0.997322 Correct

Actual: XKSLN Decoded: XKSLN Confidence: 0.998212 Correct

Actual: XWET3 Decoded: XWET3 Confidence: 0.980490 Correct

Actual: YAWG2 Decoded: YAWG2 Confidence: 0.985825 Correct

Actual: YBAUK Decoded: YBAUK Confidence: 0.998544 Correct

Actual: YRN26 Decoded: YRN26 Confidence: 0.998172 Correct

Actual: YT4TZ Decoded: YT4TZ Confidence: 0.997950 Correct

Actual: Z69AB Decoded: Z69AB Confidence: 0.997897 Correct

Actual: ZXTRV Decoded: ZXTRV Confidence: 0.999718 Correct

Actual: ZYZBH Decoded: ZYZBH Confidence: 0.997633 Correct

Elapsed time is 6.175383 seconds.

Character Accuracy: 0.994000

HIP Accuracy: 0.970000

Average confidence: 0.989917

Minimum confidence: 0.891131

B.3 Horizontal Projections
Actual: 27LP5 Decoded: 27LP5 Confidence: 0.994007 Correct

Actual: 2CAD2 Decoded: 2CAD2 Confidence: 0.984106 Correct

Actual: 2GX7T Decoded: 2GX7T Confidence: 0.986540 Correct

Actual: 2MR5A Decoded: 2MR5A Confidence: 0.987428 Correct

Actual: 2YGS4 Decoded: 2YGS4 Confidence: 0.976827 Correct

Actual: 373MH Decoded: 373MH Confidence: 0.993554 Correct

Actual: 3B5T3 Decoded: 3B5T3 Confidence: 0.988514 Correct

Actual: 3EYHU Decoded: 3EYHU Confidence: 0.997517 Correct

Actual: 3HKSY Decoded: 3HKSY Confidence: 0.987876 Correct

Actual: 45V7U Decoded: 45V7U Confidence: 0.996639 Correct

Actual: 4BK54 Decoded: 4BK54 Confidence: 0.998016 Correct

Actual: 4EE3C Decoded: 4EE3C Confidence: 0.985467 Correct

Actual: 4R2WH Decoded: 4R2WH Confidence: 0.996247 Correct

Actual: 4RCX4 Decoded: 4RCX4 Confidence: 0.990553 Correct

Actual: 5LX29 Decoded: 5LX29 Confidence: 0.995281 Correct

Actual: 5RESL Decoded: 5RESL Confidence: 0.983701 Correct

Actual: 5SE4L Decoded: 5SE4L Confidence: 0.989864 Correct

Actual: 5SMWJ Decoded: 5SMWJ Confidence: 0.994678 Correct

Actual: 6V2EP Decoded: 6V2EP Confidence: 0.993554 Correct

Actual: 7KPZ3 Decoded: 7KPZ3 Confidence: 0.995650 Correct

Actual: 8285R Decoded: 8285R Confidence: 0.989046 Correct

15

Actual: 8HL84 Decoded: 8HL84 Confidence: 0.989704 Correct

Actual: 8K6GS Decoded: 8K6GS Confidence: 0.976224 Correct

Actual: 9LLZK Decoded: 9LLZK Confidence: 0.991375 Correct

Actual: A4BL7 Decoded: A4BL7 Confidence: 0.994456 Correct

Actual: AU4CX Decoded: AU4CX Confidence: 0.989085 Correct

Actual: AW94W Decoded: AW94W Confidence: 0.994157 Correct

Actual: AZX7V Decoded: AZX7V Confidence: 0.998466 Correct

Actual: B4ABZ Decoded: B4ABZ Confidence: 0.997231 Correct

Actual: BDKJC Decoded: BDKJC Confidence: 0.993727 Correct

Actual: BE3S7 Decoded: BE3S7 Confidence: 0.992351 Correct

Actual: BM9X8 Decoded: BM9X8 Confidence: 0.991259 Correct

Actual: C3MLK Decoded: C3MLK Confidence: 0.990415 Correct

Actual: C3TH2 Decoded: C3TH2 Confidence: 0.990501 Correct

Actual: C6X62 Decoded: C6X62 Confidence: 0.993211 Correct

Actual: C852Z Decoded: C852Z Confidence: 0.985060 Correct

Actual: CAZMA Decoded: CAZMA Confidence: 0.991499 Correct

Actual: CNDW7 Decoded: CNDW7 Confidence: 0.991150 Correct

Actual: CSSBK Decoded: CSSBK Confidence: 0.939221 Correct

Actual: DHUBH Decoded: DHUBH Confidence: 0.994851 Correct

Actual: DKGWG Decoded: DKGWG Confidence: 0.965679 Correct

Actual: E7XGT Decoded: E7XGT Confidence: 0.976799 Correct

Actual: EC6YM Decoded: EC6YM Confidence: 0.988651 Correct

Actual: EF3SP Decoded: EF3SP Confidence: 0.965904 Correct

Actual: EL2ZY Decoded: EL2ZY Confidence: 0.987320 Correct

Actual: EUYPS Decoded: EUYPS Confidence: 0.986720 Correct

Actual: F93UV Decoded: F93UV Confidence: 0.984464 Correct

Actual: FUSGP Decoded: FUSGP Confidence: 0.976917 Correct

Actual: FUTPC Decoded: FUTPC Confidence: 0.982576 Correct

Actual: FYUYM Decoded: FYUYM Confidence: 0.991917 Correct

Actual: GBAR3 Decoded: GBAR3 Confidence: 0.982097 Correct

Actual: GF3GD Decoded: GF3GD Confidence: 0.968476 Correct

Actual: GH25P Decoded: GH25P Confidence: 0.985166 Correct

Actual: GMLVU Decoded: GMLVU Confidence: 0.988636 Correct

Actual: GR2T4 Decoded: GR2T4 Confidence: 0.985169 Correct

Actual: GRY8X Decoded: GRY8X Confidence: 0.978917 Correct

Actual: GYPGJ Decoded: GYPGJ Confidence: 0.968171 Correct

Actual: HN94A Decoded: HN94A Confidence: 0.995723 Correct

Actual: HTJGD Decoded: HTJGD Confidence: 0.980425 Correct

Actual: HX72C Decoded: HX72C Confidence: 0.992150 Correct

Actual: J2LE3 Decoded: J2LE3 Confidence: 0.993463 Correct

Actual: J4KCB Decoded: J4KCB Confidence: 0.989296 Correct

Actual: JM9SZ Decoded: JM9SZ Confidence: 0.992039 Correct

Actual: JZ53E Decoded: JZ53E Confidence: 0.994268 Correct

Actual: K8LY2 Decoded: K8LY2 Confidence: 0.993956 Correct

Actual: KBVUK Decoded: KBVUK Confidence: 0.996933 Correct

Actual: KWPRN Decoded: KWPRN Confidence: 0.994383 Correct

Actual: L4HGA Decoded: L4HGA Confidence: 0.985420 Correct

Actual: LK4YE Decoded: LK4YE Confidence: 0.985264 Correct

Actual: LL6FJ Decoded: LL6FJ Confidence: 0.981353 Correct

Actual: M224L Decoded: M224L Confidence: 0.995365 Correct

Actual: M6AXZ Decoded: M6AXZ Confidence: 0.986886 Correct

Actual: M8H4U Decoded: M8H4U Confidence: 0.992628 Correct

Actual: MG8ES Decoded: MG8ES Confidence: 0.981723 Correct

Actual: NU8JM Decoded: NU8JM Confidence: 0.995276 Correct

Actual: NYPU3 Decoded: NYPU3 Confidence: 0.986068 Correct

Actual: P2N4P Decoded: P2N4P Confidence: 0.996516 Correct

Actual: R32WR Decoded: R32WR Confidence: 0.994478 Correct

Actual: RDPL2 Decoded: RDPL2 Confidence: 0.985456 Correct

Actual: RNWBS Decoded: RNWBS Confidence: 0.997015 Correct

Actual: RP5GX Decoded: RP5GX Confidence: 0.988254 Correct

Actual: S9FES Decoded: S9FES Confidence: 0.982137 Correct

Actual: TBLU2 Decoded: TBLU2 Confidence: 0.999699 Correct

Actual: TGBSX Decoded: TGBSX Confidence: 0.982786 Correct

Actual: U3V4C Decoded: U3V4C Confidence: 0.990577 Correct

Actual: UE64X Decoded: UE64X Confidence: 0.987239 Correct

Actual: UWUCH Decoded: UWUCH Confidence: 0.991729 Correct

Actual: W4GKY Decoded: W4GKY Confidence: 0.985852 Correct

Actual: W9B2K Decoded: W9B2K Confidence: 0.993492 Correct

Actual: XA3FW Decoded: XA3FW Confidence: 0.993659 Correct

Actual: XCERZ Decoded: XCERZ Confidence: 0.987457 Correct

Actual: XKSLN Decoded: XKSLN Confidence: 0.993031 Correct

Actual: XWET3 Decoded: XWET3 Confidence: 0.986135 Correct

Actual: YAWG2 Decoded: YAWG2 Confidence: 0.989535 Correct

Actual: YBAUK Decoded: YBAUK Confidence: 0.994175 Correct

Actual: YRN26 Decoded: YRN26 Confidence: 0.992761 Correct

Actual: YT4TZ Decoded: YT4TZ Confidence: 0.987157 Correct

Actual: Z69AB Decoded: Z69AB Confidence: 0.991632 Correct

Actual: ZXTRV Decoded: ZXTRV Confidence: 0.996448 Correct

Actual: ZYZBH Decoded: ZYZBH Confidence: 0.984823 Correct

Elapsed time is 6.790168 seconds.

Character Accuracy: 1.000000

HIP Accuracy: 1.000000

Average confidence: 0.988372

Minimum confidence: 0.939221

B.4 Template Correlations
Actual: 27LP5 Decoded: 27LP5 Confidence: 0.825181 Correct

Actual: 2CAD2 Decoded: 2CAD2 Confidence: 0.975870 Correct

Actual: 2GX7T Decoded: 2GX7T Confidence: 0.979121 Correct

Actual: 2MR5A Decoded: 2MR5A Confidence: 0.928278 Correct

Actual: 2YGS4 Decoded: 2YGS4 Confidence: 0.970611 Correct

Actual: 373MH Decoded: 373MH Confidence: 0.975391 Correct

Actual: 3B5T3 Decoded: 3B5T3 Confidence: 0.933198 Correct

Actual: 3EYHU Decoded: 3EYHU Confidence: 0.994478 Correct

Actual: 3HKSY Decoded: 3HKSY Confidence: 0.970833 Correct

Actual: 45V7U Decoded: 45V7U Confidence: 0.947059 Correct

Actual: 4BK54 Decoded: 4BK54 Confidence: 0.956189 Correct

Actual: 4EE3C Decoded: 4EE3C Confidence: 0.972240 Correct

Actual: 4R2WH Decoded: 4R2WH Confidence: 0.964177 Correct

Actual: 4RCX4 Decoded: 4RCX4 Confidence: 0.980775 Correct

Actual: 5LX29 Decoded: 5LX29 Confidence: 0.951461 Correct

Actual: 5RESL Decoded: 5RESL Confidence: 0.794538 Correct

Actual: 5SE4L Decoded: 5SE4L Confidence: 0.934453 Correct

Actual: 5SMWJ Decoded: 5SMWJ Confidence: 0.805682 Correct

Actual: 6V2EP Decoded: 6V2EP Confidence: 0.985146 Correct

Actual: 7KPZ3 Decoded: 7KPZ3 Confidence: 0.973909 Correct

Actual: 8285R Decoded: 8285R Confidence: 0.934977 Correct

Actual: 8HL84 Decoded: 8HL84 Confidence: 0.972920 Correct

Actual: 8K6GS Decoded: 8K6GS Confidence: 0.959971 Correct

Actual: 9LLZK Decoded: 9LLZK Confidence: 0.981355 Correct

Actual: A4BL7 Decoded: A4BL7 Confidence: 0.679270 Correct

Actual: AU4CX Decoded: AU4CX Confidence: 0.981999 Correct

Actual: AW94W Decoded: AW94W Confidence: 0.933406 Correct

Actual: AZX7V Decoded: AZX7V Confidence: 0.995734 Correct

Actual: B4ABZ Decoded: B4ABZ Confidence: 0.992869 Correct

Actual: BDKJC Decoded: BDKJC Confidence: 0.981906 Correct

Actual: BE3S7 Decoded: BE3S7 Confidence: 0.980886 Correct

Actual: BM9X8 Decoded: BM9X8 Confidence: 0.976996 Correct

Actual: C3MLK Decoded: C3MLK Confidence: 0.984983 Correct

Actual: C3TH2 Decoded: C3TH2 Confidence: 0.982591 Correct

Actual: C6X62 Decoded: C6X62 Confidence: 0.992224 Correct

Actual: C852Z Decoded: C852Z Confidence: 0.932864 Correct

Actual: CAZMA Decoded: CAZMA Confidence: 0.988927 Correct

Actual: CNDW7 Decoded: CNDW7 Confidence: 0.961476 Correct

Actual: CSSBK Decoded: CSSBK Confidence: 0.957649 Correct

Actual: DHUBH Decoded: DHUBH Confidence: 0.985930 Correct

Actual: DKGWG Decoded: DKGWG Confidence: 0.939548 Correct

Actual: E7XGT Decoded: E7XGT Confidence: 0.958905 Correct

Actual: EC6YM Decoded: EC6YM Confidence: 0.981291 Correct

Actual: EF3SP Decoded: EF3SP Confidence: 0.949183 Correct

Actual: EL2ZY Decoded: EL2ZY Confidence: 0.971211 Correct

Actual: EUYPS Decoded: EUYPS Confidence: 0.979362 Correct

Actual: F93UV Decoded: F93UV Confidence: 0.968414 Correct

Actual: FUSGP Decoded: FUSGP Confidence: 0.971808 Correct

Actual: FUTPC Decoded: FUTPC Confidence: 0.971874 Correct

Actual: FYUYM Decoded: FYUYM Confidence: 0.978115 Correct

Actual: GBAR3 Decoded: GBAR3 Confidence: 0.953717 Correct

Actual: GF3GD Decoded: GF3GD Confidence: 0.959121 Correct

Actual: GH25P Decoded: GH25P Confidence: 0.933124 Correct

Actual: GMLVU Decoded: GMLVU Confidence: 0.987956 Correct

Actual: GR2T4 Decoded: GR2T4 Confidence: 0.976689 Correct

Actual: GRY8X Decoded: GRY8X Confidence: 0.963954 Correct

Actual: GYPGJ Decoded: GYPGJ Confidence: 0.966630 Correct

Actual: HN94A Decoded: HN94A Confidence: 0.989126 Correct

Actual: HTJGD Decoded: HTJGD Confidence: 0.966547 Correct

Actual: HX72C Decoded: HX72C Confidence: 0.986825 Correct

Actual: J2LE3 Decoded: J2LE3 Confidence: 0.986353 Correct

Actual: J4KCB Decoded: J4KCB Confidence: 0.981501 Correct

Actual: JM9SZ Decoded: JM9SZ Confidence: 0.980201 Correct

Actual: JZ53E Decoded: JZ53E Confidence: 0.941834 Correct

Actual: K8LY2 Decoded: K8LY2 Confidence: 0.981948 Correct

Actual: KBVUK Decoded: KBVUK Confidence: 0.991951 Correct

Actual: KWPRN Decoded: KWPRN Confidence: 0.958539 Correct

Actual: L4HGA Decoded: L4HGA Confidence: 0.981440 Correct

Actual: LK4YE Decoded: LK4YE Confidence: 0.970474 Correct

Actual: LL6FJ Decoded: LL6FJ Confidence: 0.959527 Correct

Actual: M224L Decoded: M224L Confidence: 0.990120 Correct

Actual: M6AXZ Decoded: M6AXZ Confidence: 0.679171 Correct

Actual: M8H4U Decoded: M8H4U Confidence: 0.982491 Correct

Actual: MG8ES Decoded: MG8ES Confidence: 0.975059 Correct

Actual: NU8JM Decoded: NU8JM Confidence: 0.979278 Correct

Actual: NYPU3 Decoded: NYPU3 Confidence: 0.969942 Correct

Actual: P2N4P Decoded: P2N4P Confidence: 0.988291 Correct

Actual: R32WR Decoded: R32WR Confidence: 0.958942 Correct

Actual: RDPL2 Decoded: RDPL2 Confidence: 0.964383 Correct

Actual: RNWBS Decoded: RNWBS Confidence: 0.966319 Correct

Actual: RP5GX Decoded: RP5GX Confidence: 0.944119 Correct

Actual: S9FES Decoded: S9FES Confidence: 0.964909 Correct

Actual: TBLU2 Decoded: TBLU2 Confidence: 0.999377 Correct

Actual: TGBSX Decoded: TGBSX Confidence: 0.978971 Correct

Actual: U3V4C Decoded: U3V4C Confidence: 0.986671 Correct

Actual: UE64X Decoded: UE64X Confidence: 0.966077 Correct

16

Actual: UWUCH Decoded: UWUCH Confidence: 0.964454 Correct

Actual: W4GKY Decoded: W4GKY Confidence: 0.955301 Correct

Actual: W9B2K Decoded: W9B2K Confidence: 0.955179 Correct

Actual: XA3FW Decoded: XA3FW Confidence: 0.959456 Correct

Actual: XCERZ Decoded: XCERZ Confidence: 0.977761 Correct

Actual: XKSLN Decoded: XKSLN Confidence: 0.984414 Correct

Actual: XWET3 Decoded: XWET3 Confidence: 0.943594 Correct

Actual: YAWG2 Decoded: YAWG2 Confidence: 0.959316 Correct

Actual: YBAUK Decoded: YBAUK Confidence: 0.981986 Correct

Actual: YRN26 Decoded: YRN26 Confidence: 0.977572 Correct

Actual: YT4TZ Decoded: YT4TZ Confidence: 0.977199 Correct

Actual: Z69AB Decoded: Z69AB Confidence: 0.978042 Correct

Actual: ZXTRV Decoded: ZXTRV Confidence: 0.990738 Correct

Actual: ZYZBH Decoded: ZYZBH Confidence: 0.967960 Correct

Elapsed time is 7.277254 seconds.

Character Accuracy: 1.000000

HIP Accuracy: 1.000000

Average confidence: 0.959318

Minimum confidence: 0.679171

17

